Research on Binance Futures Multi-currency Hedging Strategy Part 3

Research on Binance Futures Multi-currency Hedging Strategy Part 3

·

9 min read

Just a rough simulation, so that everyone has a specific concept of the amount of lost margins. You can download the notebook and upload it to the FMZ research environment, and run the code yourself.

Binance's risk estimation of selling short over rise and buying long over fall trend strategies

First look at the original report: https://www.fmz.com/digest-topic/5584 and the improved report: https://www.fmz.com/digest-topic/5588

The strategy has been public sharing for 4 days now. The early stage preformed very well, with high returns and few retracements, so that many users are using a very high leverage to gamble a 10% return per day. However, as stated in the initial report, there is no perfect strategy. Selling short over rise and buying long over fall trend make use of the characteristics of altcoins to rise and fall together. If a currency moves out of a unique trend, it will accumulate many holding positions. although a moving average was used to track the initial price, the risks still exist. This report mainly quantifies the specific risks and why the parameter recommended trade_value accounts for 3% of the total funds.

In order to highlight the code, we put in advanced of this part, everyone should try first run the following code (starting from the import libraries part).

In order to simulate, we assume there are 20 currencies, but only need to add BTC and ETH, and use BTC to represent 19 currencies with constant prices. ETH represents the currency with independent trend currency. Due to it is only a simulation, there is no need to track the initial price by moving average here, assuming that the price is rising at a rapid rate.

First, simulate the situation where the price of a single currency continues to rise. Stop_loss indicates that the stop loss deviates. Here is only a simulation. The actual situation will have intermittent retracement, it will not as bad as the simulation.

Suppose there is no retracement to this currency, when the stop loss deviation is 0.41, ETH has risen 44% at this time, and the results finally became lost 7 times of the trading value, that is, trade_value 7. If trade_value is set to 3% of total funds, then loss = total funds 0.03 7. The maximum retracement is about 0.03 7 = 21%.

You can estimate your own risk tolerance based on the results below.

btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [i/100. for i in range(100,500)] # Ethereum, up 1% in one cycle

for stop_loss in [i/1000. for i in range(10,1500,50)]:
    e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
    trade_value  = 300 # 300 transactions

    for i in range(200):

        index = (btc_price[i]*19+eth_price[i])/20. # index

        e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]}) 

        diff_btc = btc_price[i] - index # deviation
        diff_eth = eth_price[i] - index

        btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
        eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])

        aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
        aim_eth_value = -trade_value*round(diff_eth/0.01,1)

        if aim_btc_value - btc_value > 20:
            e.Buy('BTC',btc_price[i],(aim_btc_value - btc_value)/btc_price[i])

        if aim_eth_value - eth_value < -20 and diff_eth < stop_loss:
            e.Sell('ETH',eth_price[i], (eth_value-aim_eth_value)/eth_price[i],diff_eth)

        if diff_eth > stop_loss and eth_value < 0: # Stop loss
            stop_price = eth_price[i]
            e.Buy('ETH',eth_price[i], (-eth_value)/eth_price[i],diff_eth)

    print('Currency price:',stop_price,' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 1.02  Stop loss deviation: 0.01 Final balance: 9968.840396  Multiple of losing trade volume: 0.1
Currency price: 1.07  Stop loss deviation: 0.06 Final balance: 9912.862738  Multiple of losing trade volume: 0.3
Currency price: 1.12  Stop loss deviation: 0.11 Final balance: 9793.616067  Multiple of losing trade volume: 0.7
Currency price: 1.17  Stop loss deviation: 0.16 Final balance: 9617.477263  Multiple of losing trade volume: 1.3
Currency price: 1.23  Stop loss deviation: 0.21 Final balance: 9337.527299  Multiple of losing trade volume: 2.2
Currency price: 1.28  Stop loss deviation: 0.26 Final balance: 9051.5166  Multiple of losing trade volume: 3.2
Currency price: 1.33  Stop loss deviation: 0.31 Final balance: 8721.285267  Multiple of losing trade volume: 4.3
Currency price: 1.38  Stop loss deviation: 0.36 Final balance: 8350.582251  Multiple of losing trade volume: 5.5
Currency price: 1.44  Stop loss deviation: 0.41 Final balance: 7856.720861  Multiple of losing trade volume: 7.1
Currency price: 1.49  Stop loss deviation: 0.46 Final balance: 7406.412066  Multiple of losing trade volume: 8.6
Currency price: 1.54  Stop loss deviation: 0.51 Final balance: 6923.898356  Multiple of losing trade volume: 10.3
Currency price: 1.59  Stop loss deviation: 0.56 Final balance: 6411.276143  Multiple of losing trade volume: 12.0
Currency price: 1.65  Stop loss deviation: 0.61 Final balance: 5758.736222  Multiple of losing trade volume: 14.1
Currency price: 1.7  Stop loss deviation: 0.66 Final balance: 5186.230956  Multiple of losing trade volume: 16.0
Currency price: 1.75  Stop loss deviation: 0.71 Final balance: 4588.802975  Multiple of losing trade volume: 18.0
Currency price: 1.81  Stop loss deviation: 0.76 Final balance: 3841.792751  Multiple of losing trade volume: 20.5
Currency price: 1.86  Stop loss deviation: 0.81 Final balance: 3193.215479  Multiple of losing trade volume: 22.7
Currency price: 1.91  Stop loss deviation: 0.86 Final balance: 2525.155765  Multiple of losing trade volume: 24.9
Currency price: 1.96  Stop loss deviation: 0.91 Final balance: 1837.699982  Multiple of losing trade volume: 27.2
Currency price: 2.02  Stop loss deviation: 0.96 Final balance: 988.009942  Multiple of losing trade volume: 30.0
Currency price: 2.07  Stop loss deviation: 1.01 Final balance: 260.639618  Multiple of losing trade volume: 32.5
Currency price: 2.12  Stop loss deviation: 1.06 Final balance: -483.509646  Multiple of losing trade volume: 34.9
Currency price: 2.17  Stop loss deviation: 1.11 Final balance: -1243.486107  Multiple of losing trade volume: 37.5
Currency price: 2.24  Stop loss deviation: 1.16 Final balance: -2175.438384  Multiple of losing trade volume: 40.6
Currency price: 2.28  Stop loss deviation: 1.21 Final balance: -2968.19255  Multiple of losing trade volume: 43.2
Currency price: 2.33  Stop loss deviation: 1.26 Final balance: -3774.613275  Multiple of losing trade volume: 45.9
Currency price: 2.38  Stop loss deviation: 1.31 Final balance: -4594.305499  Multiple of losing trade volume: 48.6
Currency price: 2.44  Stop loss deviation: 1.36 Final balance: -5594.651063  Multiple of losing trade volume: 52.0
Currency price: 2.49  Stop loss deviation: 1.41 Final balance: -6441.474964  Multiple of losing trade volume: 54.8
Currency price: 2.54  Stop loss deviation: 1.46 Final balance: -7299.652662  Multiple of losing trade volume: 57.7

In simulating the situation of continuous decline, the decline is accompanied by a decrease in the value of the contract, so the risk is higher than the rise, and as the price falls, the rate of increase in losses is accelerating. When the stop loss deviation value is -0.31, the currency price drops by 33% at this time, and a loss of 6.5 transactions. If the trade amount trade_value is set to 3% of the total funds, the maximum retracement is about 0.03 * 6.5 = 19.5%.

btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [2-i/100. for i in range(100,200)] # Ethereum

for stop_loss in [-i/1000. for i in range(10,1000,50)]:
    e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
    trade_value  = 300 # 300 transactions

    for i in range(100):

        index = (btc_price[i]*19+eth_price[i])/20. # index

        e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]}) 

        diff_btc = btc_price[i] - index # deviation
        diff_eth = eth_price[i] - index

        btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
        eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])

        aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
        aim_eth_value = -trade_value*round(diff_eth/0.01,1)

        if aim_btc_value - btc_value < -20:
            e.Sell('BTC',btc_price[i],-(aim_btc_value - btc_value)/btc_price[i])

        if aim_eth_value - eth_value > 20 and diff_eth > stop_loss:
            e.Buy('ETH',eth_price[i], -(eth_value-aim_eth_value)/eth_price[i],diff_eth)

        if diff_eth < stop_loss and eth_value > 0:
            e.Sell('ETH',eth_price[i], (eth_value)/eth_price[i],diff_eth)
            stop_price = eth_price[i]

    print('Currency price:',round(stop_price,2),' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 0.98  Stop loss deviation: -0.01 Final balance: 9983.039091  Multiple of losing trade volume: 0.1
Currency price: 0.93  Stop loss deviation: -0.06 Final balance: 9922.200148  Multiple of losing trade volume: 0.3
Currency price: 0.88  Stop loss deviation: -0.11 Final balance: 9778.899361  Multiple of losing trade volume: 0.7
Currency price: 0.83  Stop loss deviation: -0.16 Final balance: 9545.316075  Multiple of losing trade volume: 1.5
Currency price: 0.77  Stop loss deviation: -0.21 Final balance: 9128.800213  Multiple of losing trade volume: 2.9
Currency price: 0.72  Stop loss deviation: -0.26 Final balance: 8651.260863  Multiple of losing trade volume: 4.5
Currency price: 0.67  Stop loss deviation: -0.31 Final balance: 8037.598952  Multiple of losing trade volume: 6.5
Currency price: 0.62  Stop loss deviation: -0.36 Final balance: 7267.230651  Multiple of losing trade volume: 9.1
Currency price: 0.56  Stop loss deviation: -0.41 Final balance: 6099.457595  Multiple of losing trade volume: 13.0
Currency price: 0.51  Stop loss deviation: -0.46 Final balance: 4881.767442  Multiple of losing trade volume: 17.1
Currency price: 0.46  Stop loss deviation: -0.51 Final balance: 3394.414792  Multiple of losing trade volume: 22.0
Currency price: 0.41  Stop loss deviation: -0.56 Final balance: 1575.135344  Multiple of losing trade volume: 28.1
Currency price: 0.35  Stop loss deviation: -0.61 Final balance: -1168.50508  Multiple of losing trade volume: 37.2
Currency price: 0.29  Stop loss deviation: -0.66 Final balance: -4071.007983  Multiple of losing trade volume: 46.9
Currency price: 0.25  Stop loss deviation: -0.71 Final balance: -7750.361195  Multiple of losing trade volume: 59.2
Currency price: 0.19  Stop loss deviation: -0.76 Final balance: -13618.366286  Multiple of losing trade volume: 78.7
Currency price: 0.14  Stop loss deviation: -0.81 Final balance: -20711.473968  Multiple of losing trade volume: 102.4
Currency price: 0.09  Stop loss deviation: -0.86 Final balance: -31335.965608  Multiple of losing trade volume: 137.8
Currency price: 0.04  Stop loss deviation: -0.91 Final balance: -51163.223715  Multiple of losing trade volume: 203.9
Currency price: 0.04  Stop loss deviation: -0.96 Final balance: -81178.565715  Multiple of losing trade volume: 303.9
# Libraries to import
import pandas as pd
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/20227de6c1d10cb9dd1.csv ', index_col = 0)
price_usdt.index = pd.to_datetime(price_usdt.index)
price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,]
price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0)
price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange:

    def __init__(self, trade_symbols, leverage=20, commission=0.00005,  initial_balance=10000, log=False):
        self.initial_balance = initial_balance # Initial asset
        self.commission = commission
        self.leverage = leverage
        self.trade_symbols = trade_symbols
        self.date = ''
        self.log = log
        self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit'])
        self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0}

    def Trade(self, symbol, direction, price, amount, msg=''):
        if self.date and self.log:
            print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg))

        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount

        self.account['USDT']['realised_profit'] -= price*amount*self.commission # Minus handling fee
        self.account['USDT']['fee'] += price*amount*self.commission
        self.account[symbol]['fee'] += price*amount*self.commission

        if cover_amount > 0: # close positions first
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  # profit
            self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage # Free margin

            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['margin'] -=  cover_amount*self.account[symbol]['hold_price']/self.leverage
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']

        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount

            self.account['USDT']['margin'] +=  open_amount*price/self.leverage            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
            self.account[symbol]['margin'] +=  open_amount*price/self.leverage

        self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
        self.account[symbol]['price'] = price
        self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price

        return True

    def Buy(self, symbol, price, amount, msg=''):
        self.Trade(symbol, 1, price, amount, msg)

    def Sell(self, symbol, price, amount, msg=''):
        self.Trade(symbol, -1, price, amount, msg)

    def Update(self, date, close_price): # Update assets
        self.date = date
        self.close = close_price
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            if np.isnan(close_price[symbol]):
                continue
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']

        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
        self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage
        self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]
From: Research on Binance Futures Multi-currency Hedging Strategy Part 3 (fmz.com)